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Abstract Currently, there is incomplete knowledge of the

damping level and its sources in satellite structures and a

suitable method to model it constitutes a necessary step for

reliable dynamic predictions. As a first step of a damping

characterization, the damping of honeycomb structural pan-

els, which is identified as a main contributor to global

damping, has been considered by ALCATEL SPACE. In this

work, the inherent vibration damping mechanism in sandwich

panels, including those with both aluminium and carbon

fibre-reinforced plastic (CFRP) skins, is considered. It is first

shown how the theoretical modal properties of the sandwich

panel can be predicted from the stiffness and damping prop-

erties of its constituent components using the basic laminate

theory, a first-order shear deformation theory and a simple

discretization method. Next, a finite-element transcription of

this approach is presented. It is shown to what extent this

method can be implemented using a finite-element software

package to predict the overall damping value of a sandwich

honeycomb panel for each specific mode. Few of the many

theoretical models used to predict natural frequencies of

plates are supported by experimental data and even fewer for

damping values. Therefore, in a second, experimental part,

the Rayleigh–Ritz method and NASTRAN (finite-element

software used by ALCATEL SPACE) predicted modal

characteristics (frequency and damping) are compared with

the experimentally obtained values for two specimens of

typical aluminium core honeycomb panels (aluminium and

CFRP skins) used by ALCATEL SPACE as structural panels.

It is shown through these results that the method (theoretical

and finite element) is satisfactory and promising.

Introduction

Load-bearing materials are often used in sandwich form in

weight-sensitive structures. In this, two skins are attached to

a lightweight core such as a ‘‘rigid’’ foam plastic or a hon-

eycomb material. This is primarily to increase the bending

stiffness to weight ratio. The tensile modulus of materials is

substantially higher than their shear modulus, and this is

particularly true with fibre-reinforced plastic (FRP) com-

posites. FRP composites have a high in-plane stiffness to

weight ratio. In bending, these composites can be used even

more effectively by using sandwich technology.

The disparity between the in-plane and shear elastic

moduli of FRP composites also inversely affects their

vibration damping capacity: they exhibit substantial

damping capacity in shear but are only slightly damped in

normal deformation in the fibre direction, although even

then they are more damped than metals. It, therefore, fol-

lows that the advantage of using FRP composites in a

sandwich form for efficient load-bearing does not neces-

sarily carry into utilising their vibration damping capacity.

This, however, can sometimes be effectively remedied by

employing a damped material for the sandwich core, but

there will then usually be stiffness and weight penalties

which were not acceptable in the present investigation.
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In a previous work [1], it was shown that the basic laminate

theory together with a simple numerical procedure, namely

the Rayleigh–Ritz method, may be used to predict the modal

properties of a thin, laminated FRP panel. The predicted

results were shown to correlate favourably with the results

obtained experimentally, and were shown to be at least as

accurate as the results predicted by the more elaborate finite-

element method. The aim in the present work is essentially to

build upon that experience, and to investigate the possibility

of using an analogous method in trying to predict the modal

properties of sandwich panels actually used in aerospace and

other transport applications. These are increasingly made

from relatively thin and laminated FRP skins and a shear-stiff

honeycomb core. Yuan and Dawe [2] and Chen and Chan [3]

analysed the vibration of sandwich panels, using numerical

solution procedures, while Noor et al. [4] presented a wide-

ranging review on computational models for sandwich

plates, including vibration and damping. Nayak et al. [5, 6]

have used finite-element analysis to predict the vibration

modes and damping of simply supported plates, but produced

no experimental data to support their findings.

Theory

Preliminary definitions and assumptions

The aim is to determine the modal properties, including

frequencies, mode shapes and damping, of a free-free

sandwich panel using the numerical method of Rayleigh–

Ritz. The measure of damping used here is the specific

damping capacity, SDC, defined as the ratio of the energy

dissipated in the material to the maximum strain energy

reached in one cycle of vibration, thus

W ¼ DU

U
ð1Þ

W is related to other commonly used damping parameters

such that

W
2p
¼ g ¼ Df

fn

¼ d
p
¼ 2c

cc

¼ 2f ð2Þ

where g is loss factor, d is logarithmic decrement, c is the

viscous damping coefficient, f is the proportion of critical

damping cc, fn is the natural frequency and Df is the

bandwidth of the amplitude versus frequency resonance

curve at 1=
ffiffiffi

2
p

of the resonant amplitude.

Chen and Chan [3] used a viscoelastic approach, as did

Rikards et al. [7] for predicting the damping of a sandwich

plate, but produced no experimental data to validate their

results. But it must be pointed out that any frequency [rate]

dependence of the damping or moduli of epoxy-based

composites and honeycomb cores as used here which are

used at temperatures well below their glass transition

temperature is very weak. A strain-rate independent

damping mechanism therefore better fits the experimental

data for carbon fibre composites and honeycomb [8, 9].

Thus, both of the terms in Eq. 1 can be computed solely

from the nature of the modal deformation (mode shape),

and the modulus and damping values in the fibre direction

and transverse to this direction (axes 1, 2 and 3 in Fig. 1).

It is assumed that there exists mid-plane symmetry

through the thickness of the sandwich in terms of material

and geometry, and also in terms of the orientation of any

orthotropic constituent parts. It is also assumed that the

sandwich consists of two uniform skins of high normal

stiffness and a uniform core which is of sufficient rigidity

to render the sandwich mid-plane as the neutral bending

axis of the whole sandwich cross section.

It is further assumed that a Mindlin-type, first-order shear

deformation predominates in the sandwich plate, in which

case the total rotation of the plate cross sections will consist of

not only the rotation due to the bending slope, but also the

rotation due to the interlaminar shearing in the plate. In this

situation, and for small lateral deformations, a straight line

normal to the mid-plane before deformation will remain

straight but no longer normal after deformation. We take a

simplified approach in estimating the strain energy of a

sandwich with thin, layered FRP skins, in that we treat the

sandwich as a whole as consisting of ‘layers’ of transversely

isotropic materials, albeit of different mechanical properties

and geometry. In so doing, however, we apportion the strain

energy generated due to the in-plane deformations solely to

the skins, and the strain energy generated due to the out-of-

plane deformations solely to the core. In effect, the in-plane

stresses of the sandwich core, and the transverse shear stresses

in the sandwich skin are all assumed to be negligible. The first

simplification is only justifiable for a shear-soft sandwich,

which is normally the case with practical sandwich materials.

The second assumption is only justified when there exists a

sufficiently high ratio of the skin/core thickness. It should be

emphasised that due to the particularly low interlaminar shear

θ

12

x

y

z
ψ x

ψ y a

b

h

3

Fig. 1 Plate coordinates and lamina orientation: 1, 2 and 3 relate to the

fibre direction in a lamina; x, y, and z relate to the major axes of the plate

J Mater Sci (2008) 43:6604–6618 6605

123



modulus of the FRP materials, the interlaminar shearing of

relatively thick, laminated sandwich skins or, by extension, of

thick laminated plates cannot in general be ignored without

incurring serious loss of accuracy in the results.

Finally, and in correspondence with an assumed Mindlin-

type first-order shear deformation in the two-dimensional

plate, we follow the approach taken by Dawe and Roufaeil

[10] and by Craig and Dawe [11] in using the equivalent one-

dimensional displacement functions, namely the Timo-

shenko beam equations, in the Rayleigh–Ritz expansions.

On subjecting the plate described above to bending only,

one may write

u ¼ zwxðx; yÞ ð3aÞ
v ¼ zwyðx; yÞ ð3bÞ

w ¼ wðx; yÞ ð3cÞ

where u and v are displacements at a distance z through the

thickness along the x and y directions, respectively, w is the

mid-plane displacement in the z direction, and wx and wy are the

total rotations along the x and y directions, respectively (Fig. 1).

The in-plane strains are given by

ex ¼
ou

ox
ð4aÞ

ey ¼
ov

oy
ð4bÞ

exy ¼
ou

oy
þ ov

ox
ð4cÞ

and the transverse shear strains are given by

exz ¼
ou

oz
þ ow

ox
¼ wx þ

ow

ox
ð5aÞ

eyz ¼
ov

oz
þ ow

oy
¼ wy þ

ow

oy
ð5bÞ

From Eqs. 3–5, it is convenient to write the strains in a

compact form as

fex;yg ¼

ex

ey

eyz

exz

exy

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

¼

vxz
vyz
vyz

vxz

vxyz

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

ð6Þ

where

vx

vy

vyz

vxz

vxy

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

¼

owx

ox
owy

oy

wy þ ow
oy

wx þ ow
ox

owx

oy þ
owy

ox

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

ð7Þ

Development of the energy expressions

The strain energy

Denoting the co-ordinate system of any orthotropic mate-

rial in the sandwich by 1, 2 and 3 (Fig. 1), and assuming

that the through-thickness strain is negligible, then the

strain energy of the plate is given by

U ¼ 1

2

Z

v

frigTfeig dv ði ¼ 1; 2; 4; 5; 6Þ ð8Þ

in which

frig ¼ ½Qij�fejg ði; j ¼ 1; 2; 4; 5; 6Þ ð9Þ

and

feig ¼

v1z
v2z
v4

v5

v6z

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

ð10Þ

and the matrix [Qij] is a symmetric matrix whose

components consist of the on-axis, reduced plane stress

stiffness matrix (i, j = 1, 2, 6), as well as the transverse

shear stiffness terms (i, j = 4, 5). These are given in terms

of the normal and shear moduli, E and G, respectively, and

of the major Poisson’s ratio t12, as follows

Q11 ¼
E2

1

E1 � t2
12E2

; Q12 ¼
t12E1E2

E1 � t2
12E2

;

Q22 ¼
E1E2

E1 � t2
12E2

; Q66 ¼ G12; Q44

Q55 ¼ G13; Q16 ¼ Q26 ¼ Q45 ¼ 0

ð11Þ

It is noted that the suffixes i and j correspond to the notations

of the fourth-rank stiffness tensor which have been contracted

for convenience according to the following scheme

11! 1 22! 2 33! 3 23! 4 13! 5 12! 6:

Substituting for {ri} from Eq. 9 and for {ei} from Eq. 10 in

Eq. 8 gives

U ¼ 1

2

Z

v

v1z
v2z
v4

v5

v6z

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

T

fQijg

v1z
v2z
v4

v5

v6z

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

dv ð12Þ

Using the strain transformation relationship

feig ¼ ½T �fex;yg; ð13Þ

in which [T] is given in terms of directional cosine terms

m = cos h, n ¼ sin h as

6606 J Mater Sci (2008) 43:6604–6618

123



½T� ¼

m2 n2 0 0 mn
n2 m2 0 0 �mn
0 0 m �n 0

0 0 n m 0

�2mn 2mn 0 0 m2 � n2

2

6

6

6

6

4

3

7

7

7

7

5

; ð14Þ

then the strain energy in the plate co-ordinate system is

given by

U ¼ 1

2

Z

v

½T�
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T
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;
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2

Z

v
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vyz
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vxz

vxyz
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>
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>

>

>
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T

fQijg

vxz
vyz
vyz

vxz

vxyz
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>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

dv ð15Þ

where

½Qij� ¼ ½T �T ½Qij�½T � ð16Þ

Noting that slopes and deflections are invariant of z, then

Eq. 15 can be simplified to

U ¼ 1

2

Z

X

vx

vy

vxy

2

6

4

3

7

5

T

ðDijÞ
vx

vy

vxy

2

6

4

3

7

5

ði; j ¼ 1; 2; 6Þ

0

B

@

þ
vyz

vxz

� �T

ðAijÞ
vyz

vxz

� �

ði; j ¼ 4; 5Þ
!

dX ð17Þ

in which X is the plate surface area and,

½Dij� ¼
Z

h=2

�h=2

½Qij�z2 dz ði; j ¼ 1; 2; 6Þ ð18Þ

Since Qij is independent of z within each layer k, this

equation may be written as

½Dij� ¼
X

L

k¼1

½Qk

ij�
Z

hk

hðk�1Þ

z2 dz ¼ 1

3

X

L

k¼1

½Qk

ij� h3
k � h3

ðk�1Þ

� �

ði; j ¼ 1; 2; 6Þ ð19Þ

in which Q
ðkÞ
ij is the off-axis reduced plane stress stiffness

matrix of the kth layer, hk and h(k-1) are the upper and lower

z-coordinates of the kth layer, respectively, and L is the

total number of layers. For the mid-plane symmetric plate

the following hold

hðZÞ ¼ hð�ZÞ and Q
k

ijðZÞ ¼ Q
k

ijð�ZÞ ð20Þ

Then, Eq. 19 may be simplified to

½Dij� ¼
2

3

X

L=2

k¼1

½Qk

ij� h3
k � h3

ðk�1Þ

� �

ði; j ¼ 1; 2; 6Þ ð21Þ

Ignoring the transverse shear in the skins, and letting hc

be the total thickness of the core, then

½Aij� ¼
Z

hc=2

�hc=2

½Qij�dz ¼ hc½Q
c

ij� ði; j ¼ 4; 5Þ ð22Þ

in which ½Qc

ij� corresponds to the core.

Using Eq. 7 in Eq. 17, expanding and simplifying the

resulting expressions gives

U ¼ 1

2

Z

X

 

D11

owx

ox

� �2

þ2D12

owx

ox

owy

oy

þ 2D16

owx

ox

owx

oy
þ

owy

ox

� �

þ D22

owy

oy

� �2

þ 2D26

owy

oy

owx

oy
þ

owy

ox

� �

þ D66

owx

oy
þ

owy

ox

� �2

þA44 wy þ
ow

oy

� �2

þA55 wx þ
ow

ox

� �2

þ 2A45 wxwy þ wx

ow

oy
þ wy

ow

ox
þ ow

ox

ow

oy

� �

!

dX

ð23Þ

The damping energy

Assuming that the damping energy is the sum of separable

energy dissipations due to the individual stress components

[12], then the total dissipated energy for the five stress

components considered in the present analysis is given by

DU ¼ 1

2

Z

v

frigT ½w�feigdv ði ¼ 1; 2; 4; 5; 6Þ ð24Þ

where the damping matrix [w] is the diagonal matrix

½w� ¼

w1

w2 0

w4

0 w5

w6

2

6

6

6

6

4

3

7

7

7

7

5

; ð25Þ

whose components quantify the proportion of the energy loss

in each cycle of vibration due to each stress component.

The development of the expression for damping energy

in Eq. 24 is similar to that for the strain energy, and it

will not be reproduced here for brevity reasons. On

developing the expression (24), and in analogy with
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the expression obtained for the strain energy in Eq. 23,

the following expression is obtained for the damping

energy

DU ¼ 1

2

Z

X

 

d11

owx

ox

� �2

þðd12þ d21Þ
owx

ox

owy

oy

þðd16þ d61Þ
owx

ox

owx

oy
þ

owy

ox

� �

þ d22

owy

oy

� �2

þðd26þ d62Þ
owy

oy

owx

oy
þ

owy

ox

� �

þ d66

owx

oy
þ

owy

ox

� �2

þd44 wyþ
ow

oy

� �2

þd55 wxþ
ow

ox

� �2

þðd45þ d54Þ wxwyþwx

ow

oy
þwy

ow

ox
þ ow

ox

ow

oy

� �

!

dX

ð26Þ

where

½dij� ¼
2

3

X

L=2

k¼1

½Rk
ij� h3

k � h3
ðk�1Þ

� �

ði; j ¼ 1; 2; 6Þ ð27Þ

and

½dij� ¼ hc½R
c

ij� ði; j ¼ 4; 5Þ ð28Þ

in which ½Rc

ij� corresponds to the core. The damped stiffness

matrix ½Rij� is a generally non-symmetric matrix whose

components are given as

½Rij� ¼ ½T�T ½w�½Qij�½T � ði; j ¼ 1; 2; 4; 5; 6Þ ð29Þ

The Rayleigh–Ritz energy minimization method

The Rayleigh–Ritz method is covered extensively in the

literature. A detailed account for isotropic plates has been

given by Young [13] and for anisotropic plates by Ashton

and Waddoups [14] and by Ashton and Whitney [15]. The

method involves expressing the lateral deflection of a

rectangular plate in terms of suitable beam functions in the

x and y directions. On subsequent minimisation of the total

energy of the plate, the plate modal properties including

modal frequency and deformations (mode shapes) are

obtained.

The Rayleigh–Ritz trial functions in the present case are

given by Craig and Dawe [11] as

wðx; yÞ ¼
X

M

m¼1

X

N

n¼1

amnwmðxÞ wnðyÞ ð30aÞ

wxðx; yÞ ¼
X

M

m¼1

X

N

n¼1

bmn wmðxÞ wnðyÞ ð30bÞ

wyðx; yÞ ¼
X

M

m¼1

X

N

n¼1

cmn wmðxÞ wnðyÞ ð30cÞ

in which amn, bmn and cmn are unknown coefficients to be

determined through the minimisation of energy, and w and

w are the Timoshenko beam functions satisfying the free-

free boundary conditions (these are the boundary

conditions applicable to the present work)

w ¼ ðcoshðbanÞ þ dsinhðbanÞ
þ h cosðbbnÞ þ ð�kdÞ sinðbbnÞÞ ðx=yÞ

ð31aÞ

w ¼ ðdk2coshðbanÞ þ k2sinhðbanÞ þ ð�kdk1Þ cosðbbnÞ
þ ð�hk1Þ sinðbbnÞÞ ðx=yÞ ð31bÞ

where the (x/y) notation is meant to indicate that the

functions are applied in both x and y directions, and

n ¼ x; y

Lx=y
;

a; b ¼ ð1=
ffiffiffi

2
p
Þ �;þðr2 þ s2Þ þ ðr2 � s2Þ þ 4

b2

� 	1
2

( )
1
2

;

k1 ¼ bðb2 � s2Þ=bL; k2 ¼ bða2 þ s2Þ=aL; h ¼ k2a
k1b

;

k ¼ ba� k2

bb� k1

r2 ¼ I

AL2
; s2 ¼ EI

kAGL2
; d ¼ cosðbbÞ � coshðbaÞ

ðk=hÞ sinðbbÞ � sinhðbaÞ
ð32Þ

in which b (not to be confused with b representing the plate

width) is the roots of the frequency equation of the free-

free Timoshenko beam, which is given as

2� 2coshðbaÞ cosðbbÞ þ b
½b2r2ðr2 � s2Þ2 þ 3r2 � s2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� b2r2s2Þ
p

sinhðbaÞ sinðbbÞ ¼ 0 ðx=yÞ ð33Þ

It is noted that the first two rigid body modes of the free-

free beam are given by

ð1Þ w1 ¼ 1

w2 ¼ 1� 2n

� �

; and ð2Þ w1 ¼ 0

w2 ¼ 1

� �

ð34Þ

Following the substitution of the trial functions (30) in

Eq. 23, and rearranging the resulting expression so that the
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functions of x and y are separated into their respective

integration domains, one can obtain the strain energy

By comparing Eq. 26 with Eq. 23, it is easily verified

that the expression for the damping energy following the

U ¼ 1

2

X

M

i¼1

X

N

j¼1

D11 bij

Z

a

w0iw
0
mdx

Z

b

wjwndy

2

4

3

5bmn þ 2D12 bij

Z

a

w0iwmdx

Z

b

wjw
0
ndy

2

4

3

5

8

<

:

cmn

þ 2D16 bij

Z

a

w0iwmdx

Z

b

wjw
0
ndy

2

4

3

5bmn þ bij

Z

a

w0iw
0
mdx

Z

b

wjwndy

2

4

3

5cmn

8

<

:

9

=

;

þ D22 cij

Z

a

wiwmdx

Z

b

w0jw
0
ndy

2

4

3

5cmn þ 2D26 cij

Z

a

wiwmdx

Z

b

w0jw
0
ndy

2

4

3

5bmn

8

<

:

þ cij

Z

a

wiw
0
mdx

Z

b

w0jwndy

2

4

3

5cmn

9

=

;

þ D66 bij

Z

a

wiwmdx

Z

b

w0jw
0
ndy

2

4

3

5bmn

8

<

:

þ cij

Z

a

w0iw
0
mdx

Z

b

wjwndy

2

4

3

5cmn þ 2 bij

Z

a

wiw
0
mdx

Z

b

w0jwndy

2

4

3

5cmn

9

=

;

þ A44 cij

Z

a

wiwmdx

Z

b

wjwndy

2

4

3

5cmn þ aij

Z

a

wiwmdx

Z

b

w0jw
0
ndy

2

4

3

5amn

8

<

:

þ 2 cij

Z

a

wiwmdx

Z

b

wjw
0
ndy

2

4

3

5amn

9

=

;

þ A55 bij

Z

a

wiwmdx

Z

b

wjwndy

2

4

3

5bmn

8

<

:

þ aij

Z

a

w0iw
0
mdx

Z

b

wjwndy

2

4

3

5amn þ 2 bij

Z

a

wiw
0
mdx

Z

b

wjwndy

2

4

3

5amn

9

=

;

þ 2A45 bij

Z

a

wiwmdx

Z

b

wjwndy

2

4

3

5cmn þ bij

Z

a

wiwmdx

Z

b

wjw
0
ndy

2

4

3

5amn

8

<

:

þ cij

Z

a

wiw
0
mdx

Z

b

wjwndy

2

4

3

5amn þ aij

Z

a

w0iwmdx

Z

b

wjw
0
ndy

2

4

3

5amn

9

=

;

9

=

;

ðm ¼ 1; 2; . . . M; n ¼ 1; 2; . . . NÞ

ð35Þ

J Mater Sci (2008) 43:6604–6618 6609

123



Rayleigh–Ritz expansion procedure becomes essentially

the same as the expression for the strain energy once

appropriate substitutions of the factors d for the factors D

and A in this latter equation are made

Finally, the kinetic energy is given by

T ¼ 1
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In a similar manner, following the substitution of the

trial functions (30) in Eq. 37 and rearranging so that the

functions of x and y are separated into their respective

integration domains, the following expression can be

obtained for the kinetic energy

T ¼ 1

2
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� x2

Since the total energy of the system is constant at any

given time, i.e.,

U � T ¼ constant, ð38Þ

then it follows that
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then Eq. 39 can be written as
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The terms for Cij and mii will be found in the Appendix.

Equation (42) can be written in the generalised

eigenvalue problem form in terms of stiffness and mass

matrices K and M, respectively, and of displacements A

as

ðK� x2MÞA ¼ 0 ð43Þ

On pre-multiplying this equation by K�1; and

rearranging to give

K�1MA ¼ KA ð44Þ

in which K = 1/x2, then the solution of Eq. 44 by an

iterative method will yield the modal characteristics,

including angular frequencies x and generalised displace-

ments A, starting with the more prominent, lower modes.

For any generalised modal displacements A so obtained,

the modal specific damping capacity can be computed from

either Eqs. 1, 35 and 36 or, alternatively, from Eqs. 1, 36

and 37 since, neglecting the damping energy, the maximum

values of the strain and kinetic energies are the same. The

nodal patterns, including of lateral displacements w, can be

obtained from Eqs. 30.

Finite-element approach

A finite-element approach allowing the determination of

the specific damping capacity of a damped layered com-

posite panel has been proposed by Maheri and Adams [16].

This method can be applied to a honeycomb sandwich

panel with composite or aluminium skins.

The strain energy U is then calculated using the fol-

lowing expression

U ¼ 1

2
fdgT ½K�fdg ð45Þ

where {d} are nodal displacements and [K] the structural

stiffness matrix.

We use here the fact that a mean elasticity matrix [Dm]

can be used to assemble the [K] matrix with the conven-

tional formulation

½K� ¼
Z

V

f½B�T ½Dm�½B�gedV ð46Þ

where [B] is the strain–displacement matrix and the suffix e

refers to the elemental division integrated over the total

volume of the structure.

In such a context, if we assume now a parabolic distri-

bution of transverse shear strains through the core

thickness, we can write

feig ¼

v1z
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and we can show, using the fact that the following

equation

Z

V

feigT ½Dm�feig eif gT
dV ¼

X

L

k¼1

Z

Vk

feigT ½Qk

ij�feigdVk

ð48Þ

must be true, that

½Dm
ij � ¼

4

h3

X

L

k¼1

½Qk

ij� h3
k � h3

ðk�1Þ

� �

ði; j ¼ 1; 2; 6Þ ð49aÞ
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15

8h
½Qc
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2h3

c

3h2
þ h5

c

h4

� 	

ði; j ¼ 4; 5Þ ð49bÞ

In calculating separately (on a spreadsheet for instance)

the symmetric mean elasticity matrix terms , one can define

equivalent elastic materials, one for the skin and one for the

core, that can be declared and allocated to the

corresponding elements in the finite-element model.

Now, in terms of the finite-element formulation, the

dissipated energy is given by

DU ¼ 1

2
fdgT ½Kd�fdg ð50Þ

where [Kd] is the damped, unsymmetrical structural

stiffness matrix given by

½Kd� ¼
Z

V

f½B�T ½Dm
d �½B�gedV ð51Þ

and ½Dm
d � will be called the damped mean elasticity matrix.

The terms of this matrix are defined through the following

expression

Z

V
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By analogy, we have
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To calculate the dissipated energy DU using a finite-

element software package, the damped structural stiffness

matrix [Kd] must be first assembled. This could be done

easily if the ½R� matrix was symmetric. The problem can be

solved by creating a symmetric damped mean elasticity

matrix allowing us to define equivalent materials, one for

the skins and one for the core.

The relatively negligible ½Dm
d16�; ½Dm

d26�; ½Dm
d61� and ½Dm

d62�
terms can be ignored and the quite small ½Dm

d12� and ½Dm
d21�

terms can be averaged such that

½Dm
d12� ¼ ½Dm

d21� ¼
½Dm

d12� þ ½Dm
d21�

2
ð54Þ

With such modifications, the damped mean elasticity

matrix is indeed symmetric.

Using this justified approximation, we now define the

equivalent damped elastic properties of the skins as

E�x ¼ ½Dm
d11� �

½Dm
d12�
½Dm

d22�

� �2

½Dm
d22�; E�y ¼

½Dm
22�

Dm
11

E�x ;

m�xy ¼
½Dm

d12�
½Dm

d22�
ð55Þ

and of the core as

G�xz ¼ ½Dm
d44�; G�xy ¼ ½Dm

d55� ð56Þ

This method allows, with the same finite-element model

and with two different sets of material, data to solve on one

hand the eigenvalue problem giving frequency, nodal

displacements and strain energy for each mode using the

software functionality, and on the other hand a damped

structural stiffness matrix [Kd] taking into account modified

equivalent damped materials. A last matrix calculation using

the nodal displacements gives DU and so W for each mode.

Experimental

Tests were carried out on two systems of mid-plane sym-

metric rectangular sandwich plates, namely sandwich

plates with CFRP skins, and sandwich plates with alu-

minium skins, both systems having the same low density,

aluminium honeycomb (HC) material as their core. Each

composite skin consisted of only 3-plies of CFRP material,

with a skin/core thickness ratio of 80 (in the case of the

aluminium skins, this ratio was 60). Also, in both systems,

the core orthotropic axes were aligned along the plate axes.

The specifications of the sandwich plates tested in the

present work are given in Table 1. Definitions of a, b and h

are as those in Fig. 1, and ts is the sandwich skin thickness.

As shown, the SP1-2 and the SP2-2 plates are, respectively,

the same SP1-1 and SP2-1 plates that have been reduced in

the side length.

These kinds of composite/aluminium and aluminium/

aluminium honeycomb sandwich systems have been used

by ALCATEL SPACE as structural panels in telecommu-

nication satellites. The materials that have been used in this

experimental phase were supplied by ALCATEL SPACE

and are flight representative.

The experimental work essentially consisted of two

parts. First, dynamic tests were carried out on the constit-

uent parts of the sandwich panels in order to determine

their moduli of elasticity and SDC. These data were then
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used to predict the modal characteristics, as described

previously. Free-free modal tests were then carried out on

sandwich panels as a whole, and the experimental results

were compared to the theoretical predictions.

The constituent elastic and damping data were deter-

mined in correspondence to the prevalent mode of

deformation in the constituent parts when the sandwich is

loaded laterally. That is, the skin material was tested for its

in-plane properties, whereas the core material was tested

for its transverse shear properties.

Sandwich constitutive data

CFRP composite skins

The in-plane dynamic properties of the FRP skins were

determined by using flexural tests on thin, unidirectional

beam samples at 0� and 90� fibre orientation in order to

determine the damping and Young’s moduli in these two

principal orientations. A torsion test was used on unidi-

rectional beam sample at 0� and 90� orientation in order to

determine the longitudinal and transverse shear moduli and

damping. The details of these test procedures have been

given elsewhere [9]. In order to verify the soundness of the

samples and the damping test set-up and procedure, all

samples were tested over a range of stress amplitudes and

the SDC was observed to be effectively independent of

vibration amplitude.

In Table 2, the constitutive elastic and damping data of

the composite material are listed.

Aluminum skins

Dynamic Young’s modulus was determined from the

natural frequency of the aluminium beam samples, which

material was used for the aluminium skin of the all-

aluminium sandwich plate. Because the beam samples

supplied were thin and soft, it was not possible to conduct

resonance flexural and torsion tests on these samples and,

consequently, the shear modulus and damping data could

not be generated for this material. However, aluminium

being an isotropic material whose elastic properties are

strain-rate independent, the shear modulus was found

from the Young’s modulus and Poisson’s ratio, assuming

a value of 0.35 for the latter. Furthermore, aluminium has

very low damping, and the damping value previously

measured for a high-strength aluminium alloy was also

used for the present purposes. In Table 3, the elastic and

damping data used for sandwich aluminium skins are

listed.

Aluminum honeycomb core

Dynamic transverse shear properties of the honeycomb

core were determined by conducting shear tests on hon-

eycomb material in the two principal x and y directions,

that is along and across the ‘nodes’ (double-walled webs),

respectively. The details of the honeycomb test procedure

can be found in [8]. Tests were conducted on several

samples in each direction, and the results from those

samples that showed non-linear damping (due to cracks

and other flaws introduced in manufacturing the test

specimens) were discarded.

In Table 4, the constitutive elastic and damping data of

the aluminium honeycomb material are listed.

Table 1 Specifications of the sandwich plates tested

Plate designation Composition a (mm) b (mm) h (mm) ts (mm)

SP1-1 ðþ60; 0;�60Þ CFRP skin, Alum. HC core 500.0 500.0 24.92 0.30

SP1-2 ðþ60; 0;�60Þ CFRP skin, Alum. HC core 400.0 400.0 24.92 0.30

SP2-1 Alum. skin, Alum. HC core 501.5 500.5 24.99 0.40

SP2-2 Alum. skin, Alum. HC core 401.0 400.0 24.99 0.40

Table 2 Dynamic orthotropic elastic and damping properties of the

CFRP material used for the sandwich skins

E1

(GPa)

E2

(GPa)

G12

(GPa)

t12 w1

(%)

w2

(%)

w12

(%)

q
(kg/m3)

271.0 6.02 5.46 0.34 0.45 7.30 8.16 1563.3

1 is the fibre direction and 2 is transverse to this direction

Table 3 Elastic and damping data used for the aluminium skins of

the all-aluminium sandwich

E (GPa) G (GPa) w1,2 (%) w12 (%) q (kg/m3)

68.7 25.40 0.10 0.10 2687.1

Table 4 Dynamic transverse shear elastic and damping properties of

the aluminium honeycomb material used for the sandwich core

G13 (MPa) G23 (MPa) w13 (%) w23 (%)

140.0 75.4 0.74 1.02
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Sandwich plate modal properties

The sandwich plates were subjected to free-free modal

tests. The free-free plate modal tests are primarily used for

qualitative purposes and are aimed at establishing the

damping properties of the typical plate under various

modal deformations.

Unless otherwise stated, the tests were carried out using

the test method described by Maheri and Adams [1, 16].

Both bandwidth and free-decay methods were used for the

damping measurements, the choice of the method being

dependent on the suitability of each method for each par-

ticular test. Furthermore, in all the plate tests, the linearity

of the variation of SDC with displacement amplitude was

verified by using a simple and quick method in which the

output voltage from the vibration pickup device was

observed to vary linearly with the input current to the

vibration drive device.

The experimentally obtained modal characteristics were

subsequently compared with theoretically predicted results

and NASTRAN finite element model results. The mode

shapes shown in the following results are all theoretical

mode shapes although, as will be explained later, in most

cases these could be verified experimentally.

Sandwich with CFRP composite skins

In testing composite skin sandwich panels, substantial

damping was observed which was not predicted by theory.

As the results in Table 5 show, there is a large discrepancy

between the experimental and the predicted damping

results, especially in the second mode. The amount of

damping in the subsequent modes was so large that it

effectively hindered obtaining the resonance frequencies

and mode shapes with any degree of certainty. However, as

the table shows, the frequency values of those modes that

could be established experimentally, namely the first and

the second mode, are reasonably close to the theoretical

values.

The large amount of damping was attributed to air-

damping (see below). To verify this, a test was conducted

in a vacuum chamber whereby the pressure was reduced to

1 millitorr in several steps; at each step the SDC of the

second mode of vibration of the plate was measured.

Because of the size limitation of the vacuum chamber, the

size of the plate was reduced from a 500 (mm) to a

400 (mm) square plate, the latter referred to here as the

SP1-2 plate. The test results are plotted in Fig. 2.

As the test results in Fig. 2 show, in this particular case,

air-damping has caused an almost threefold increase in the

SDC, while the frequency has fallen by about 2%.

Generally, if a stiff, heavy plate vibrates in air, there is

little or no effect of the air on the natural frequencies and

damping. Even in water, the effect can be very small.
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Fig. 2 Variation of damping and frequency with air pressure for the

second mode of the SP1-2 plate with CFRP skins (+60, 0, -60) and

aluminium honeycomb core. e SDC; ( frequency

Table 5 Modal results of the SP1-1 plate, tested in air

Mode shape

Freq. (Hz)

Experiment 518 779 – –

Rayleigh–Ritz Method 531 816 989 1259

SDC (%)

Experiment 3.79 15.1 – –

Rayleigh–Ritz Method 1.38 0.83 0.84 0.94
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However, when a ‘light’ plate vibrates, the mass and

stiffness of the adjacent air can be significant, and acoustic

radiation (air-damping) can account for a large proportion

of the vibrational energy. The effect is pronounced when

the dimensions of the plate (and hence also the nodal

patterns) are in approximate coincidence with the wave-

length of sound waves in air. At 1000 (Hz), the wavelength

of these sound waves is approximately 330 (mm), which is

close to the plate dimensions. At reduced pressure, the

acoustic radiation is reduced.

Following the above test, all the modal tests on the plate

were conducted in vacuum. The in vacuo results are given

in Table 6.

Comparing the results in Tables 5 and 6, it is evident

that the large discrepancy observed between the experi-

mental and theoretical damping values when testing in air

was, indeed, due to air-damping. Furthermore, close cor-

relation is observed between the experimental, theoretical

and finite-element model frequencies, and the damping

values are also reasonably close in the majority of cases.

Due to technical difficulties posed in verifying the in vacuo

experimental mode shapes, we could only be certain of

those mode shapes that could be established in air. These

include the first three modes listed in Table 6.

It is further noted that, by the nature of the test, the in

vacuo tests involve attaching a component of the vibration

drive mechanism to the plate. In the present case, a small

magnet whose mass was less than 2% of the plate was

attached. Although this is not expected to change the fre-

quencies and mode shapes significantly, it is nevertheless

important to note that it will have some influence on the

experimental results, in particular, it is likely to reduce

slightly the experimental frequencies, but should have little

effect on the damping, excepting in so far as the mode

shape was also changed.

Sandwich with aluminum skins

Although substantial air-damping was also experienced

with the all-aluminium sandwich plate, unlike the com-

posite sandwich, establishing the in-air modal properties of

the aluminium sandwich proved to be much easier. The

modal properties could be obtained for all the modes

considered, and these are given in Table 7. From the results

in this table, it is noted that reasonably good correlation

exists between the experimental and Rayleigh–Ritz pre-

dicted frequencies although, as mentioned above, air-

damping is seen to have again dominated the experimental

damping values.

To establish the extent of the influence of air-damping in

the damping results of all-aluminium sandwich, the latter

was also tested in vacuum. The in vacuo results are given

in Table 8.

As the table shows, reasonably close correlation exists

between the experimental, Rayleigh–Ritz and NASTRAN

modal frequencies and damping values.

It may be instructive to consider the inherent sandwich

damping, as reflected in the in vacuo results of Tables 6

and 8, in light of a few underlying facts regarding the

damping mechanism at work in a sandwich configuration.

Generally speaking, the size factor can have a significant

influence on the damping in thick plates, particularly in

plates that are in sandwich form. The influence of the size

factor on damping is proportional to the degree of the

difference between the elastic and damping properties of

the sandwich constituent parts [17]. This is because the

sandwich size, whether thickness-wise or, inversely

equivalently, broadness-wise, determines the proportion

of the contribution of the skin and of the core to the

overall strain and damping energies and, by inference, so

does the degree of the difference in the elastic and

Table 6 Modal results of the SP1-2 plate, tested in vacuo

Mode shape

Freq. (Hz)

Experiment 757 1202 1471 1755

Rayleigh–Ritz method 796 1221 1469 1817

NASTRAN model 750 1140 1381 1655

SDC (%)

Experiment 1.11 1.51 1.06 1.21

Rayleigh–Ritz method 1.39 0.84 0.84 0.94

NASTRAN model 1.03 1.00 0.76 0.97
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damping properties between these two constituent parts.

For the same reason, the frequency of vibration and the

particular modal deformation that the sandwich under-

goes, as well as the plate boundary conditions can all be

expected to influence the overall sandwich damping. The

fact that the SDC in the all-aluminium sandwich

(Table 8) is almost invariant of the modal deformation is

the reflection of the fact that not only the skin material is

isotropic and its elastic and damping properties are

invariant of direction (Table 3), but also that these

properties are of the same order of magnitude in the core

(Table 4). By contrast, the elastic and damping properties

of the CFRP material used in the skin of the composite/

honeycomb sandwich are significantly orientation depen-

dent (Table 2). However, it should also be born in mind

that by the nature of the present CFRP skin lay-up, which

comprises three layers at (+60, 0, -60) orientations, the

CFRP skin material is in fact planar-isotropic, and any

anisotropy in the skin deformation is limited to the out of

plane deformations which have been assumed to be

negligible here. As a result, although the variation in

modal damping values of this plate (Table 6) is larger

than that in the all-aluminium sandwich, nevertheless, it

is relatively little affected by the particular mode of

deformation.

Conclusions

It was shown that it is possible to predict modal charac-

teristics, including damping, of practical sandwich panels

using basic laminae theory and a simplified plate defor-

mation analysis. A first-order shear deformation theory was

used, although the transverse shearing in a relatively thin

sandwich skin was considered to be negligible. Test results

tend to suggest that this was a justified assumption, at least

in so far as modal characteristics of thin-skinned, free-free

sandwich panels are concerned.

The Rayleigh–Ritz expressions used for the present case

are a fairly straightforward extension of the classical

Table 7 Modal results of the SP2-1 plate, tested in air

Mode shape

Freq. (Hz)

Experiment 397 613 771 955

Rayleigh–Ritz method 394 608 755 946

SDC (%)

Experiment 0.90 3.10 22.0 10.5

Rayleigh–Ritz method 0.29 0.18 0.27 0.33

Table 8 Modal results of the SP2-2 plate, tested in vacuo

Mode shape

Freq. (Hz)

Experiment 599 932 1151 1413

Rayleigh–Ritz method 591 913 1122 1367

NASTRAN model 586 895 1107 1326

SDC (%)

Experiment 0.35 0.37 0.33 0.33

Rayleigh–Ritz method 0.36 0.22 0.33 0.39

NASTRAN model 0.24 0.23 0.25 0.36
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method, namely the addition of the two transverse shear

rotations to the lateral displacement as the trial functions.

Although the derivations and subsequent computer codifi-

cation are inevitably more voluminous, and notwithstanding

the fact that the application of the method is limited to

rectangular plates, this numerical method is known to be

fast and accurate where it can be applied.

A finite-element approach using NASTRAN software

package capabilities has also been used and gives results

which are close to the Rayleigh–Ritz and experimental

values.

In modal testing of the sandwich panels, it was shown

that these experienced enormous damping when tested in

air, owing to acoustic radiation. It was concluded, there-

fore, that in order to obtain data for modal damping due to

the inherent damping of the material in sandwich panels,

which data that should be of particular interest in space

applications, tests will have to be carried out in vacuo.

Both the analytical Rayleigh–Ritz method and the NA-

STRAN finite-element approach have given quite

satisfactory results for both frequencies and specific

damping capacities for specific free-free in vacuo tests

using two kinds of ALCATEL SPACE sandwich alumin-

ium panels (aluminium skins and CFRP skins).
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Components of the Rayleigh–Ritz mass matrix
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